
Infrastructure Concepts

Jim Kowalkowski
Marc Paterno

December 9, 2004

Abstract

We explore some concepts on the design of software infrastructure for HEP
physics event processing, based on our review of the CDF, DØ, and Mini-
BooNE experiments’ software.

This is an excerpt from a larger document.

Contents

1 Analysis task 2

2 Reconstruction task 4

3 Trigger task 6

4 Instrumenting the Framework 6

5 Running the Program 6

6 Event Processing Schedule 7

7 Dynamic Libraries 9

8 Topics We Haven’t Time to Write About 9

In this document (an excerpt from a larger infrastructure-related document to
which we contributed) we present several tasks that a (physicist) user might want
to do. The examples we have chosen are:

1



• analysis

• reconstruction

• trigger

• code behavior analysis

We do not intend to present formal use cases; we sketch only enough of a descrip-
tion of the task to make the necessary points clear. For each task, we describe the
main features of the software of one or more experiments that we believe produced
a successful solution. In some sections, we provide a short series of related tasks
to illustrate different aspects of the experiments’ solutions.

1 Analysis task

First consider a simple task of histogramming the transverse momentum of the
leading pT muon in each event. We start from a DST, and we do not want to per-
form new reconstruction. We want to find those muons, already reconstructed,
that were identified by a specific version of the muon reconstruction algorithm
and with a specific set of parameters used in the reconstruction and particle iden-
tification.

Each of the experiments we have worked with has the concept of a framework
module whose purpose is analysis (as opposed to reconstruction, online filtering,
or other tasks).

Framework module: A framework module a coherent body of code (an object) that
operates on a physics event and responds to external stimuli (computer sci- Framework

moduleence “events”) to perform various actions related to its single task. It per-
forms its task without direct interaction with other framework modules. It
can make use of framework services, defined later.

A user writing such a module would be responsible for implementing the few
necessary member functions for the module to perform its task.

One such member function is the module constructor. After construction the
module should be in a functional state. It should have correct values for all its
parameters and should not require later re-configuration before use. The parame-
ters for the module should not be compiled into the code; it should be possible to
inspect the parameter set without having an instance of the module—or the source
code for the module—present. There should not be a two-phase (or multi-phase)

2



configuration in which configuration is begun on construction but is completed only
after another module has been constructed.

The CDF framework has the concept of a help system that tells the users the
meaning and allowed values of various parameters used to configure a module.
Users have found this very valuable. The CDF mechanism is more tightly bound to
the module than we prefer; we prefer that the help system knows about parameter
sets, but not about modules. We prefer that the code of the module is independent
of the code of the help system, and vice versa. DØ has the concept of configuring
a module with a single set of parameter values; a module can be re-configured
by giving it a new set of parameters. This organization makes the reconfiguration
logic simple to write and easy to understand. The framework is responsible for
associating a specific parameter set with the appropriate module instance.

In our example, the creation of the histogram in which we will collect muon pT

values should be done in the constructor.1 The parameters for the histogram (the
number of bins, and the minimum and maximum values for the range) should
not be specified in the code, but should be provided by the parameter set given to
the constructor. Within the constructor, we query the parameter set for these val-
ues. The parameter set has a type-safe interface for retrieving the value associated
with a given named parameter. The parameter set conveniently groups associated
parameters at a level of granularity chosen by the developer of the module.

The second important member function of an analysis module is the analyze
event function. The argument for this function is (a const reference or pointer to)
an event.

Event: An event is an in-memory object database that can support insertions and
queries, but that supports neither deletions nor modifications of objects al-
ready inserted. The “query language” is not general, but is instead tailored
to the physicists’ needs, and is expressed in the interface of the event class. Event
Each event contains raw data and derived products (such as trigger output
and reconstruction artifacts) related to a single beam crossing, or simulation
thereof.

In our example, we are considering the histogramming of muons. Let’s consider
several sub-examples.

In one case, we want to histogram only those muons from a specific algorithm,
in a specific code version, configured with a specific set of parameters. We want
to make sure our sample is not contaminated by the event data objects that are the
product of any other “rogue algorithms.”

1The business of how to interact with ROOT is complicated, and we will avoid the details here.

3



Event data object: An event data object is either a part of the raw data, of the sim-
ulation information, or of the output of a reconstruction algorithm. It has a Event

data
object

unique identifier within the event.2 Associated with each event datum (but
not necessarily stored in the event) is an object that holds the provenance of
that datum. Such provenance information includes the details of the config-
uration of the algorithm that made the event data object and the identifiers
of other event data objects used as inputs for the reconstruction of the event
data object. The provenance may include additional information. There is no
“algorithm part” to an event data object.

In another case, we want to histogram the output of several algorithms, each
into its own histogram. In this case, we don’t want to fix the number of histograms
during construction of the module; we want to discover what algorithms have
been run, and histogram their output, and record the configuration information
for each algorithm from which we discover a reconstruction product.

In yet another case, we want to histogram the output of a specific algorithm,
and want the newest approved-for-conference-use version of that algorithm found
in the event, but reject versions that are “too old” or “too new.”

To support all these uses, the event data must be associated with the full set of
configuration information, and the event’s query mechanism must be able to use
all of, or any part of, that information as a constraint upon selection.

A third example member function is the divulge statistics function. This function
serves as a signal to the module that it is time for the module to report its current
state. Clearly a more detailed specification than this is necessary—we include it
here primarily to illustrate that not all module member functions have to do with
(physics) event processing.

Two additional module member functions are end of run and end of job. In our
example we have no need of these functions, so we do not implement them.

2 Reconstruction task

There is a wide variety of types of reconstruction tasks. We will use as an example
missing ET reconstruction, because it seems to be among the simplest of reconstruc-
tion tasks.

We create a single module to perform this task. The constructor for this module
is passed the same sort of parameter set object as was the analysis module from

2We see no need for this identifier to be globally unique and the cost of making it globally unique
seems prohibitive.

4



section 1. For each event, the algorithm must use a particular set of event ob-
ject instances as input. In this constructor we specify not which actual instance of
event objects are to be used as input—since they do not yet exist, and change from
event to event—but rather how the algorithm is to identify which calculation of
calibrated calorimeter energies it will use and which vertex it will use. These spec-
ifications need to be sufficiently accurate to be unambiguously identify the event
objects to be used as inputs for the missing ET calculation algorithm. In each case
we specify the type of the event data object and a description of the configuration
of the module that created that object. During construction of the module, we also
get a handle to any framework service we need—in this case the calorimeter geometry
service, which we will make use of during reconstruction.

Framework service: To get access to a global resource, we use a framework ser-
vice. Services manage initialization of, access to, and lifetimes of objects that Framework

serviceprovide non-event data—such as geometry information, and run conditions
information. It may be that access to ROOT histograms, etc. should also be
managed by a service. Our list is not exhaustive.

For the analysis module of section 1 we discussed the analyze event function; for
a reconstruction module we implement a process event function. The difference
is that process event is passed a non-const reference or pointer to the event and
is expected to modify the event by the insertion of a new event data object. In
this function, we first get handles to the correct input objects: the container of
calibrated calorimeter tower energies and the requested vertex. If either is missing,
we create a missing ET object that contains status information indicating that we
have tried and failed to reconstruct the missing ET , and also contains the reason
for the failure.

If the required inputs are found, we then iterate through the collection of calor-
imeter tower energies (in the event data object we obtained above), and determine
the directed energy vector from the vertex to the center of each hit tower, summing
the x and y components. This requires use of the geometry service to determine
the center of each tower in the collection of hit towers.

Geometry service: The geometry service is responsible for determining the identi-
fier of the current run, for determining what survey information to use for
the run, and for translating physical component identifiers to obtain geom- Geometry

serviceetry information about the identified detector component. It is independent
of event data objects—it is possible to determine the number of φ segments
in the hadronic calorimeter without having any event data present.

At the end of the iteration, we create a missing ET event data object, with the

5



appropriate data values, and insert it into the event. This object is labeled with
several pieces of metadata:

• the identifiers of the calorimeter tower energy and vertex event objects;

• the identifiers of the parameter set used to configure this module;

• possibly other items.

The missing ET object is issued its own unique (within the event) object identifier
upon insertion into the event.

In the design of the MiniBooNE reconstruction model, we found that it was
possible to automate nearly all of this identification and labeling process. Authors
of reconstruction algorithms need to do almost nothing in order to have their re-
construction products fully identified.

3 Trigger task

The trigger system places what are probably the strongest constraints on the sched-
uling features of framework. CDF has the concept of a trigger path, which consists
of a series of modules in a fixed order that act together to produce the portions
of event reconstruction necessary for a specific trigger decision. However, at CDF Trigger

pathtesting a trigger path in simulator is not sufficient to understand its behavior, be-
cause previous flows affect the result—because inputs are not sufficiently speci-
fied. Modules in different paths appearing in different orders could give different
results. In §6 we address the subject of scheduling in more detail.

4 Instrumenting the Framework

It has often been useful to measure the performance of reconstruction programs—
for example, to determine the speed of each individual task, or to find the location
of a memory leak. The module-based framework has made this easy to do, because
such tasks are handled in a common place and require neither instrumenting of
user code nor recompilation of the program.

5 Running the Program

Users at both CDF and DØ have complained about the difficulty of running their
respective reconstruction programs. Few users have expert knowledge of the pro-
gram, causing many to use ntuple-form output. Both experiments have a system

6



that is very flexible and powerful. However, both systems would benefit from
more attention to ease-of-use: presenting the configuration in a simpler fashion,
and guiding the user through more limited choices to make reasonable configura-
tions of the program. In both experiments the configuration is hierarchically de-
fined, and each node in the hierarchy can be defined in its own file. While this is a
good thing, it makes it difficult for the user to understand the result of the configu-
ration. It is hard to know what combinations of modules are valid; the system does
not help the user know what is valid. A browser of the hierarchy is a valuable tool;
DØ has recently developed such a thing. But even this does not allow the user
to understand what change in an “upstream” module will cause a change in the
behavior of a “downstream” module. Both experiments record the configuration
of the program at it was run, but both experiments lack a way to easily browse this
configuration information, or to easily share it between users.

Both experiments suffer from a lack of distinction between the build environ-
ment and the execution environment. At DØ the execution environment was intro-
duced as a late concept; tools (scripts) are provided to configure the environment
and run the program. These tools are complex. At CDF there is no separation
of the environments because a function (the constructor for the class AppUser-
Build) is intended to be tailored by the user, in order to determine what modules
are available for use, and what their instances’ names should be.

6 Event Processing Schedule

One of the important functions of a framework is to build an event processing
schedule. The schedule expresses what activities can be done in parallel and what
must be done serially. The “milestones” are also identified (multiple activities must
be completed before continuing). Many of the concepts listed below are necessary
for building a good schedule, one that:

• uses resources efficiently,

• minimizes event processing time,

• eliminates redundant calculations,

• is easy to configure,

• gives consistent and proper results, and

• can alert the user if a configuration is invalid or has ambiguities.

7



The sequences, dataflows and decision points, multithreading, and input and out-
put requirements can all be used in the creation of an event processing schedule.
Removing one of these pieces of information from the problem list will likely mean
that the schedule will be suboptimal. Are the four items listed above enough to cre-
ate this schedule at run time? How are they expressed in the configuration of the
program?

Inconsistent results is one problem that can occur if there is not enough infor-
mation available during the schedule generation. A simple example illustrates a
problem that can occur.

Figure 1: Example paths and possible execution sequences.

Figure 1 shows two paths that have the require the same instance of recon-
struction to run in order to make a decision. The framework will ensure that this
reconstruction only occurs once for each event. If the outcome of Reco-3 depends
on Reco-2 results and this relationship is not enforced within the framework, then
the outcome of Decide-3 will have a hidden dependency on the outcome of Decide-
1. To determine whether this set of paths produces a consistent result would re-
quire some kind of “coverage analysis,” where data representing the entire range
of inputs are fed through and the results are checked for consistency.

8



7 Dynamic Libraries

We want to discuss the use of dynamic (shared) libraries.
Does dead (unsed or test-related) code in a dynamically linked library cause

performance problems because it is always present, unlike a static library where
dead code costs little to nothing? It takes up virtual memory when the file is
mapped. Is it true that a small amount of dead code is not really going to hurt
much because of the demand paging mechanism in the operating system and the
lazy symbol linking?

Should shared libraries used by an executable come from only one frozen re-
lease so they are always consistent? Is this a written procedure or a policy actually
enforced in the program? How does this policy or procedure fit in with algorithm
developers? Is it too restrictive? Are there different rules for developers versus
production? Can the build produce a dependency database that is built into the
programs and also punch versioning tags (library and release) into libraries to be
used for validation? A scheme such as this could allow the dynamic library mix to
be determined by program configuration at run time.

How does one insure that in critical applications the program will not fail af-
ter a period of running because a shared object library cannot be loaded after en-
countering an event that causes a new event processing path to be executed? One
method is to only pull in libraries during program configuration.

Where is explicit loading and implicit loading used? Are only low-level li-
braries such as ROOT and persistency explicitly linked? Are all the reconstruction
tasks implicitly linked?

8 Topics We Haven’t Time to Write About

There are many topics we believe we need to discuss during our meeting, but
about which we do not have time to write. We list them here with brief explana-
tions, to help establish the scope of topics that we believe it is important to cover.
We have ordered them in order of their importance, with the most important items
first.

1. INTER-OBJECT LINKS: We believe it will be advantageous to make sure that
the persistent form of inter-object pointers within an event is realized in terms
of “dumb data” rather than any persistence mechanism’s smart pointers. The
CDF and D0 experiments placed restrictions on the use of pointers within
persistent objects. Objects in an event could refer to other objects in the same
event or to items heard within them. A reference to an item within an object

9



appears as a tuple of identifiers (EDOID,index), where EDOID is the event
data object ID discussed earlier in this document and index is the item in
this object in which we are interested. The event data object that supports
indexing is required to supply a method that will produce the desired object
given the index. Many persistent data objects fit this random access container
pattern.

2. SEQUENCES OF MODULES: We believe it is useful for the framework to have
a concept of sequences of modules that can be manipulated as a single unit.
This organizational component helps reduce the complexities of understand-
ing what a particular program configuration is doing.

3. DATAFLOWS AND DECISION POINTS: We believe that, in conjunction with
sequences from item 2 above, that it is useful for the framework to have the
concepts of dataflows and decision points, from which can be constructed trig-
ger paths (among other purposes). A dataflow is a series of paths through
which an event moves and a specification of the actions that occur within
the paths. A path may have distinct stages such as merging several input
streams, doing the reconstruction, tagging output results, or creating an analy-
sis ntuple. A decision point is a place along a path where code must make
some qualitative decision about the event. Whether or not the event will
proceed down a path or be steered to other paths is determined by the con-
figuration of a decision point.

The information conveyed by these concepts can be used to build a static
schedule. The information can be used to constrain an ensemble of module
sequences and express how there will work together. Constraint examples
can be “path one must come before path two” and “path three only happens
if path two succeeds”.

We want to discuss whether it is sufficient to have a single “process” method
that handles all types of actions performed on or with an event, or if we
should have several different methods, each with a different purpose.

4. CALIBRATION: We want to make sure we discuss the requirements placed
upon the framework and event model by the specialized task of generating
and studying calibrations. There are also issues to be discussed in the subject
of using calibrations.

5. INTERACTIVE USE: We would like to discuss the special demands placed
upon the system by the need to support interactive use. This includes is-
sues of a diverse natures, such as an interactive help system and interactive
analysis.

10



6. MULTITHREADING ISSUES: We would like to discuss the possibility of tak-
ing greater advantage of the use of multithreading, for example in the parallel
reconstruction of multiple events, and parallelism within the reconstruction
of a single event. We believe this will become more important in the future,
as multiple-processor machines and multiple-core processors become more
common.

Given the large amount of ancillary data necessary to process events and the
large start-up time, there may be an advantage to starting up a single exe-
cutable and create an event processing “pipeline.” One image of geometry
and calibration data can be established along with one instance of the data
handling and persistency code. Independent paths (or subpaths) can be ex-
ecuted in parallel. We believe that such schemes may not require physicist-
developed code to be multi-threaded. The EDM and framework will do the
synchronization and resource scheduling.

7. DATA INPUT AND OUTPUT: We want to discuss the writing of multiple
streams of output, merging multiple streams of input, and the usefulness of
“tagging” events (and objects within events) in the creation and processing
of multiple input and output streams.

8. UNPACKING: We believe it is useful for the core event model to provide
utilities for the unpacking of “raw” data, in the interest of efficiency and ease-
of-use.

9. DATA VISUALIZATION: Data visualization requires use of the interactive
features of the framework. The tools used for this operation typically com-
plicate the system because they have their own concept of an event loop.
The data formats necessary to visualize the data can be quite different than
those in an event. We would like to discuss how the interactive features of a
framework allow for interfacing to visualization packages.

10. HISTOGRAM AND NTUPLE SERVICE: We recognize that ROOT will be used
by many, if not all, CMS collaborators. We think it is likely that one of the
common uses of the analysis framework will be to produce programs that
make ROOT ntuples (or TTrees) specialized for a specific task. We also ex-
pect there to be a need for the use of histograms during reconstruction es-
pecially during the commissioning of the CMS detector. We believe that the
mechanisms provided by ROOT for the management of histograms and ntu-
ples are inadequate for serious use, and that a histogram service should be
provided to handle the management.

11



11. SPECIFYING INPUTS AND OUTPUTS: Is it a good idea for modules to de-
clare a list of necessary inputs and products? If so, how is this expressed?
It is likely that object types is not good enough and that some of the EDM
metadata is necessary (e.g., algorithm name and version or configuration pa-
rameter values). How is the static declaration part expressed? If there is a
dynamic component (one that uses metadata configuration), when does it
need to be calculated? Is it before or after module construction time?

Is this information and the dataflows and decision points information enough
for the framework to produce a deterministic schedule? We desire a schedule
that eliminates redundant work and minimizes the chances of inconsistent
results due to order dependencies within a program configuration.

12. ERROR HANDLING: We believe that the algorithms contributed by physi-
cists and others that plug into the framework cannot determine directly know
what actions are required as a result of an observed adverse condition. The
context in which the program is running will dictate what the proper actions
will be when these conditions occur. This implies that modules and algo-
rithms report conditions and the framework determines the proper course
of action3 (e.g., abort event processing, ignore, skip a portion of processing,
abort a run, save the event for further testing, restart the program). We would
like to discuss how these conditions are reported by user code and how the
framework makes use of the information.

13. CALIBRATION AND ALIGNMENT DATA MANAGEMENT: We believe it is
important for it to be easy for users to obtain the appropriate calibration data
and alignment data for a given data sample. We think it would be useful to
discuss how the framework can automate this process.

3The framework should allow run-time configuration to determine the course of action to be
taken when a module fails.

12


	1 Analysis task
	2 Reconstruction task
	3 Trigger task
	4 Instrumenting the Framework
	5 Running the Program
	6 Event Processing Schedule
	7 Dynamic Libraries
	8 Topics We Haven't Time to Write About

